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Abstract 

In this paper, we propose a new three parameter distribution with decreasing 
failure rate distribution. The new distribution contains as particular cases, the 
exponential geometric and the exponential Poisson distributions proposed by 
Adamidis and Loukas [3] and Kus [11], respectively. Consequently, as an 
advantage, it allows for under-dispersion and over-dispersion with respect to a 
Poisson distribution. We derive expressions for the quantile, r-th raw moments  
of the new distribution, including the mean and variance, the order statistics,  
the r-th moment of the order statistics, and the Rényi and Shannon entropy 
measures. Estimation is carried out via maximum likelihood. 
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1. Introduction 

Recently, it has emerged among researchers interest in the 
proposition of simple new survival distributions, which are derived from 
the usual exponential distribution as competitive distributions of 
practical significance for the analysis of survival data. For instance, we 
can cite the exponential-geometric proposed by Adamidis and Loukas [3], 
the generalized exponential distribution proposed by Gupta and Kundu 
[10], the exponential-Poisson distribution proposed by Kus [11], and a 
generalization of the exponential-Poisson distribution proposed by 
Barreto-Souza and Cribari-Neto [7]. 

In this paper, we introduce a new three parameter distribution, the 
so-called exponential negative binomial (ENB) distribution. The new 
distribution contains the exponential geometric and the exponential 
Poisson distributions proposed by Adamidis and Loukas [3] and Kus [11], 
respectively, as particular cases. Consequently, as an advantage, the 
ENB distribution represents a continuous bridge between under-
dispersion and over-dispersion with respect to a Poisson distribution that 
is usually encountered in practice. 

The remainder of the paper is outlined as follows. In Section 2, we 
introduce the new ENB distribution, present its particular cases and 
derive its survival and failure rate functions. In Section 3, we derive the 
expressions for the quantile, r-th raw moments of the ENB distribution, 
including the mean and variance, the order statistics, the r-th moment of 
the order statistics, and the Rényi and Shannon entropy measures. In 
Section 4, we discuss maximum likelihood estimation and inference. 
Some artificial applications, in Section 5, illustrate the usefulness of the 
ENB distribution for lifetime modelling. Finally, concluding remarks are 
addressed in Section 6. 
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2. The ENB Distribution 

The ENB model is derived as follows. Firstly, the negative binomial 
distribution with parameters α  and ,θ  say ( )θα,NB  (Piegorsch [12]; 

Ahmed and Abouammoh [4]; Saha and Paul [16]), has probability mass 
function (pmf) given by 
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,,2,1,0 …=m  for ,1,0 −>α>θ  and ,1 θ−>α  so that, 

[ ] [ ] .Varand 2αθ+θ=θ= MME   (2) 

As 1=α  and ,0→α  we obtain the geometric and Poisson 

distributions, respectively. Regarding negative values of ,α  Piegorsch [12] 

pointed out that when ,1 κ−=α  for κ  a positive integer such that 

,θ>κ  the negative binomial distribution with parameters θ  and κ1−  

gives the same probabilities as a binomial distribution with parameters κ  
and .κθ  Ross and Preece [15] showed that even if ( )01 >αα−=κ  is 

not an integer, the negative binomial distribution still furnishes positive 

values of [ ] ,,,1,0, ∗== κ…mmMP  where ∗κ  is the largest integer 

less than .κ  Therefore, α  can be called a dispersion parameter (Saha and 
Paul [16]). From (2), it follows that if ,01 <α<θ−  there is under-

dispersion from the Poisson model. On the other hand, if ,0>α  the 

counts are over-dispersed. 

In the sequel, we give a characterization of the ENB distribution. Let 
the discrete random variable M in (1) be zero truncated with pmf given by 
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Let { }M
iiY 1=  be a random sample of an exponential distribution with 

parameter β  for given ,mM =  with probability density function (pdf) 

given by ( ) ,; mxmemxf β−β=β  where M is assumed here to follow (3). We 

also assume that …,2,1, =jYj  are independent of M. 

Then, the random variable { }M
iiYX 1min ==  follows a ENB distribution 

with pdf given by 

( ) ( ( )) ( )( ) ,1111;
111 −α−−β−β− αθ+−−αθ+θβ=ξ α

+αxx eexf  (4) 

where ( ).,, αθβ=ξ  It is noteworthy that the ENB distribution has a 

derivable physical interpretation. If there are M components in a series 
system and their lifetimes are independent and identically distributed 
following an exponential distribution, then the overall system lifetime X 
has an ENB distribution. 

There are two important particular cases of (4). For ,1=α  it leads to 

the EG distribution introduced by Adamidis and Loukas [3]. In this case, 
( ).1 θ+θ=p  Thus, Equation (4) implies ( ) ( )ppxfEG −β=β 1,;  

( ) 21 −β−β− − xx pee  for ( ).1,0∈p  For ,0→α  we obtain, from (4), the 

exponential-Poisson density (Kus [11]) given by ( ) =θβ,;xfEP  

( )
{ }.exp

1
xex

e
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θ−
θ+β−θ−

−

θβ  Also, the ENB distribution represents a 

continuous bridge between under-dispersion ( )01 <α<θ−  and over-

dispersion ( )0>α  in the counts M. 

We also can obtain the X pdf as a mixture form, that is, 
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where ( )βmxfE ;  is exponential density function with parameter .βm  The 

coefficients mw  represent zero truncated negative binomial probability 

given by (3), that is, ( ) ., ∗=θα= mmm pww  

Equation (5) reveals that the ENB density is an infinite mixture of 
exponential densities. Hence, the properties of the ENB distributions can 
be obtained from an exponential distribution. This mixture form is very 
useful and holds for any parameter values. The ordinary moment and 
moment generating function (mgf) of the ENB distribution can be 
determined from the same infinite weighted linear combination of those 
quantities for exponential distributions. 

From (4), the cumulative distribution function of the random variable X 
with ENB distribution with parameters ,, αβ  and ,θ  i.e., ~X ( ),,, αθβENB  

is given by 

( ) ( ( )) ( )( ) ( )( ) .111111;
1111 −α−α−α−β− αθ+−αθ+−−αθ+−=ξ xexF  

(6) 

The survivor and hazard functions are given, respectively, by 
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3. Quantiles, Moments and Entropy Measures 

The quantile ( ( ),;1 ξγ=γ −
γ Fx  for ( ))1,0∈γ  of the ENB distribution 

follows from (6) as given by 

( ) ( ( ( ) ))( )( )( ) .11111log;
11111 





 αθ−αθ+−γ−−β=ξγ=

−−α−α−−−
γ Fx  

(9) 



FRANCISCO LOUZADA et al. 72

Clearly, we can simulate an ENB variate X from an uniform random 

variable U in ( )1,0  by ( ).;1 ξ= − UFX  

Some of the most important features and characteristics of a 
distribution can be studied through its moments, such that mean, 
variance, tending, dispersion skewness, and kurtosis. Following Genç [9], 
the r-th ordinary moments of X reduces from (5) to 
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where ( )λ,,, dnqpF  is the generalized hypergeometric function. This 

function is also known as Barnes’s extended hypergeometric function. The 
definition of ( )λ,,, dnqpF  is 
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where [ ] pnnn p ,,,, 21 …=n  is the number of operands of =dn,  

[ ],,,, 21 qddd …  and q is the number of operands of d. Generalized 

hypergeometric function is quickly evaluated and readily available in 
standard software such as Maple. 

Hence, the mean and variance of the ENB distribution are given, 
respectively, by 
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and 
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The moments generating function (mgf) of X, say ( ) ( )[ ],exp; XtEt =ξϕ  

is immediately derived from the mgf of the exponential distribution as 

( ) [ ( ) ]
( ( ) )

,
11
11; 11

11

1
−α−

−−∞

= αθ+−

β−
=








β
−=ξϕ ∑ MtE

m
twt m

m
 (12) 

where ( ).,~ βαENBM  

Order statistics are among the most fundamental tools in non-
parametric statistics and inference. They enter problems of estimation 
and hypothesis testing in a variety of ways. Therefore, we now discuss 
some properties of the order statistics for our distribution. Let nXX ,,1 …  

be iid random variables following ( )θαβ ,,ENB  distribution. 

The pdf of the i-th order statistic, say ,:niX  is given by 
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for ,,,1 ni …=  where ( )⋅⋅,B  is the beta function. Using the binomial 

expansion in the last equation, ( )ξ;: xf ni  becomes 
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where ( )⋅f  and ( )⋅F  are pdf and cdf given by (4) and (6), respectively. 

With a simple changing of variable, it is possible to show that the cdf of 

niX :  denoted by ,:niF  becomes 
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Expressions for the r-th moment of the order statistics nnn XX ::1 ,, …  

with pdf in the form (13) are obtained by using a result due to Barakat 
and Abdelkader [5], that is, 
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for ,,,1 ni …=  where ( )⋅S  is the survival function in (7). 

According to Rényi [14], entropy is a measure of the uncertainty 
associated with a random variable X and it has been used in several 
statistical situations. For instance, Abraham and Sankaran [2] introduce 
and study Rényi entropy for residual lifetime distributions, showing that 
the proposed measure uniquely determines the distribution and 
presenting characterizations for some lifetime models. Baratpour et al. [6] 
presents the information properties of record values based on Shannon 
entropy measure. 

In the sequel, we derive the Rényi and Shannon entropy measures. 

The Rényi entropy is defined as ( ) ( ){ },log1
1 dxxfIR

γ∫γ−
=γ

ℜ
 where 

0>γ  and 1≠γ  (see Rényi [14]). From (4), we obtain 
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Then, we have 
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The Shannon entropy is defined as ( )( )[ ]XfE log−  (Baratpour et al. [6]). 

This is a special case obtained from ( )γ→γ RI1lim  (see Rényi [14]). Hence, 

( )( )[ ] ( ) [ ] ( )( )α−αθ+−+β+θβ−=− 111logloglog XEXfE  

[ ( ( ))].11log1 xeE β−−αθ+






α
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4. Inference 

Let ( )nxx ,,1 …=x  be a random sample of the ENB distribution with 

unknown parameter vector ( ).,, θαβ=ξ  The log-likelihood ( )x;ξ= ll  is 

given by 
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The maximum likelihood estimates (MLEs) are obtained by direct 
maximization of the log-likelihood function (19). The advantage of this 
procedure is that, it runs immediately using existing statistical packages 
such as R (R Development Core Team [13]). We consider the software R 
through the simulated annealing algorithm (Aarts and Korst [1]) to 
compute the MLEs. Interested readers can obtain the code by emailing 
the authors. 

For interval estimation and tests of hypothesis on ,ξ  it is required the 

33 ×  unit observed information matrix. For one observation, the observed 
information matrix ( )ξ= KK  is given by 
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and ( )( ) ( )( ).11log 2
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Under conditions that are fulfilled for parameters in the interior of 
the parameter space but not on the boundary, the asymptotic distribution 

of ( l )n ξ − ξ  is ( ( ))., 1
3 ξ−KN 0  The estimated asymptotic multivariate 

normal ( ( l ) )1 1
3 ,N n K− − ξ0  distribution of lξ  can be used to construct 

approximate confidence intervals for confidence level γ−1   for each 

parameter rξ  is given by 

l l l l, ,
/ 2 , ,r r r r

r rz
ξ ξ ξ ξ

γ
 
ξ − ξ + 
 

κ κ  

where l
,r rξ ξκ  is the r-th diagonal element of ( )ξ−− 11Kn  estimated at 

l,ξ = ξ  for 3,2,1=r  and 2γz  is the quantile 21 γ−  of the standard 

normal distribution. 
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The likelihood ratio (LR) statistic is useful for testing goodness-of-fit 
of the ENB distribution and for comparing this distribution with some of 
its special sub-models. We can compute the maximum values of the 
unrestricted and restricted log-likelihoods to construct LR statistics for 
testing some sub-models of the ENB distribution. For example, the LR 
statistic can be used to check whether the fit using the ENB distribution 
is statistically “superior” to fit using the EG distribution for a given 

dataset. In any case, considering the partition ( ) ( ) ,,,, 21
TTTT θαβ=ξξ  

tests of hypotheses of the type ( )0
110 : ξ=ξH  versus 0

11: ξ≠ξAH  can be 

performed via the LR statistic ( l l ) ( ( ) )( )0
21 2 12 , , ,l lΛ = ξ ξ − ξ ξ�  where 

( l l )1 2,ξ ξ  and ( ( ) )0
21 ,ξ ξ�  are the MLEs of ( )21, ξξ  under AH  and ,0H  

respectively. Under null hypothesis ( )
2
#0 1

, ξχ→Λ dH  as ,∞→n  where 

( )1# ξ  is the dimension of the vector 1ξ  of interest. The LR test rejects 

,0H  if γΛ>Λ  denotes the upper %100γ  point of the ( )1# ξχ  distribution. 

5. Application 

In this section, we illustrated the usefulness of the ENB modelling on 
three dataset generated according to different dispersion schemes (under, 
equi, over). The data sets are composed by 100 observations each, 
generated from the ENB distribution. 

The first dataset, hereafter ,1A  was simulated from an under-

dispersion ( )9,1.0,1 −=α=θ=βENB  distribution. The second dataset, 

,2A  was simulated from an equi-dispersion ( )0,10,1 =α=θ=βENB  

distribution. The third dataset, ,3A  was simulated from an over-

dispersion ( ).10,5,1 =α=θ=βENB  We compare the fitting of the ENB 

distribution with the EP distribution (Kus [11]) and the EG distribution 
(Adamidis and Loukas [3]) by considering the LR statistics values. Table 1 
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gives the parameter estimates, as well as the ( ).max l−  for each fitted 

distribution for the three considered datasets. Except for the data set ,2A  

which was generated according to an equi-dispersion structure, the ENB 
distribution outperforms its particular case distributions, since we reject 
the null hypothesis in favour of the ENB distribution at the usual 
significance levels. 

Figure 1 presents the fitted density functions of the three 
distributions superimposed to the histogram and the fitted survival 
functions superimposed to the empirical survival one. 
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Figure 1. The plots of the fitted ENB, EG, and EP densities. Right panel: 
Empirical survival function together with some fitted distributions; 
upper panels: ;1A  middle panel: ;2A  bottom panel: .3A  
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Table 1. Parameter estimates and ( ).max l−  for the fitted distributions 

Data Distribution β̂  θ̂  α̂  ( ).max l−  

1A  EP 0.60 71002.7 −×   145.69 

(under-dispersion) EG 0.60 71067.6 −×   145.69 

 ENB 1.37 0.109 − 9.05 151.88 

2A  EP 0.86 10.51      − 109.49 

(equi-dispersion) EG 6.62 0.10 − 108.10 

 ENB 0.86 10.51 0.00159 109.49 

3A  EP 1.75 3.37 − 43.65 

(over-dispersion) EG 0.72 0.94 − 54.46 

 ENB 1.19 5.70 10.46 58.28 

6. Conclusion 

We propose the ENB distribution generalizing the EG and EP 
distributions, proposed by Adamidis and Loukas [3] and Kus [11], 
respectively, with the third parameter α  bringing flexibility with respect 
to the EP and EG distributions. We provide a mathematical treatment of 
the new distribution including expansions for its density, survival, hazard 
and distribution functions, moments, and quantile function. We obtain 
the pdf of the order statistics and provide expansions for the moments of 
the order statistics. We also provide two entropy measures. The 
estimation of parameters is based on the maximum likelihood approach. 
We derive the observed information matrix, give asymptotic confidence 
intervals for the distribution parameters, and consider the use of the LR 
statistic to compare the fit of the ENB model with its particular cases. We 
fit the ENB model to three different data sets in order to show the 
flexibility and the potentially of the new distribution, where we observed 
a better fit of the ENB distribution compared to its particular cases in the 
case, when presence of under or over dispersion is observed. 
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In many practical applications, the lifetimes are affected by explanatory 
variables. In this context, parametric regression structure for estimating 
univariate are widely used, since, when the parametric regression models 
provide a good fit to the lifetime dataset, they tend to give more precise 
estimates of the quantities of interest because, these estimates are based 
on fewer parameters. Regression structuring should be investigated 
further in the context of the proposed ENB distribution. 
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